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SUMMARY 
An upwind MUSCL-type implicit scheme for the three-dimensional Navier-Stokes equations is presented 
and details on the implementation for three-dimensional flows of a ‘diagonal’ upwind implicit operator are 
developed. Turbulence models for separated flows are also described with an emphasis on the numerical 
specificities of the Johnson-King non-equilibrium model. Good predictions of separated two- and three- 
dimensional flows are demonstrated. 
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1. INTRODUCTION 

During the late 1970s to the mid 1980s, numerical methods for solving the Euler and 
Navier-Stokes equations have been extensively developed acceleration techniques were im- 
proved by the introduction of implicit’ or multigrid’ schemes; shock waves were also better 
captured with either an ad hoc added artificial dissipation3 or with new high-order upwind 

Many computations performed in the late 1980s showed clearly that these techniques 
are reasonably efficient to solve the two-dimensional Navier-Stokes equations. These techniques 
are currently being extended to compute realistic flows on complex three-dimensional geometries. 
The codes developed can also serve to test the predictability of turbulent models on three- 
dimensional configurations. In the present work, one such test is described. Emphasis is given to 
practical details, such as the three-dimensional extension of an implicit ‘diagonal’ upwind 
method, and on the implementation of a non-equilibrium turbulence model. These details, which 
are usually overlooked, proved in practice to be important since they are often the limit between 
failure and success. The outline of the work is the following. After a short description of the 
equations to be solved (Section 2), the numerical procedure is detailed: the spatial discretization 
in Section 3, the time integration and acceleration technique in Section 4 and the boundary 
conditions in Section 5. The turbulence models used are then described (Section 6) and their 
numerical behaviour is discussed (Section 7). Finally, in Section 8 results are presented, 
demonstrating that the main features of three-dimensional separated flows can be predicted. 

2. GOVERNING EQUATIONS 

The basic equations used to describe the physical model are the integral form of the Reynolds 
equations. Since the dominant viscous effects for high-Reynolds-number flows arise from the 
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diffusion normal to the body surfaces, the thin layer approximation is employed. The turbulent 
transport of momentum and energy due to the fluctuations of velocity and pressure is modelled 
using the eddy viscosity concept, making the fmm of the Reynolds equations identical to the form 
of the Navier-Stokes equations. The equations to be solved are then 

where 

is the vector of the conserved variables. The quantity Y denotes an arbitrary control volume, 
while aY and n correspond respectively to the boundary surface and the outer normal of this 
volume. - -  - 

In a Cartesian frame ( i , j ,  k) the tensor F of the convection terms is 

and the tensor FY of the diffusion terms in the thin layer approximation in the direction is 
0 0 0 

axx ax, 0x2 

0x2 “YZ 

.=[ ax, FYY C Y Z  b , Z  

u a,, + U b X Y  + w ox, - qx u bxy + V d y y  + W b Y Z  - qy U b X ,  + U b Y *  + w b,, - q, 

with 

YP aei q =--q - 
Pr aq’  

where e, represents the internal energy. The bulk viscosity 1 is evaluated using the Stokes 
hypothesis 

312+2~=0, 
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and the molecular viscosity is determined from the Sutherland law 

'1' T, + 110.4 '='-($) T+1104.  (4) 

As a result of the eddy viscosity assumption, equations (1) with expression (3) for the tensor FV 
correspond also to the Reynolds equations for turbulent flows if the molecular viscosity is replace 
by an 'effective' viscosity p +p, and the quantity p / P r  by p / P r  + pt /Pr t .  The symbols pt and Pr, 
used in the previous expressions denote respectively the eddy viscosity and the turbulent Prandtl 
number. 

3. NUMERICAL METHOD 

Equations (1) are solved with an implicit upwind method of the form 

(I+AtL)6U= -AtR", u "+ = U" + 6 u, 
where I is the identity matrix, L is a spatial operator and R is the residual of the steady equations. 
Since in this work we are interested only in the steady solution of (l), no accuracy restriction is 
imposed on the implicit operator L. 

3.1. Computation of the residual 

The computation of the residual is performed following the idea introduced by Godunov6 and 
generalized by Van Leer.' The procedure comprises three stages. The first stage consists of the 
reconstruction of the flow field from its cell-averaged values by piecewise polynomial approxima- 
tions. In the second stage, the time eoolution of the reconstructed flow field is computed by solving 
at each cell face a Riemann problem. The procedure is therefore 'upwind' since the wave 
propagation is taken into account when the Riemann problem is solved. In the final stage the 
solution obtained by the resolution of the Riemann problems is projected on the cells and new 
average values are computed. This step makes the overall procedure conservative. In the 
numerical procedure used, the computation of the residual corresponds also to the explicit step as 
opposed to the implicit step which corresponds to the inversion of the operator I + Ar L. 

3.2. Reconstruction scheme 

The reconstruction of the flow field at each cell face is performed using the ic-scheme, wherein 
the left (L) and right (R) values at the i + $  cell faces are computed with an upwind-biased 
interpolation: 

with 
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In the above equation, hi represents the distance between the i+$  and i-9 face centres, q is any 
conservative variable and an overbar indicates a cell-averaged quantity. For K E [ - 1, 13 the 
rc-scheme is second-order-accurate and stable. The particular value IC =+ leads even to a third- 
order-accurate scheme (on a uniform one-dimensional mesh). 

In order to ensure an interpolation that does not increase the total variation of the initial 
distribution, the gradients i-4 have to be limited. Following Reference 8, the gradients were 
limited by replacing 64 by 6, with 

where the ‘minmod‘ operator is defined by 

sign(x) min( I x I, I y I) if sign (x) = sign(y), 
otherwise. 

minmod (x, y) = 

The value of b corresponds to the largest value for which the interpolated qi+  1 ,2  lies between ii 
and 

The cell face values are thus computed with 

h. 
2 qLi+ 1 / 2  = qi +’ [( 1 + iC)@ + (1 - lc)& 3, 

3.3. Resolution of the Riemann problem 

In the original work of Godunov the Riemann problems were solved exactly, but it has been 
proven that the same flow fields could be obtained at a lower cost if the Riemann problems were 
solved only approximately. Two such approximate Riemann solvers are those proposed by Roe’ 
and O ~ h e r . ~  They both rely on wave decomposition. In this work the Roe Riemann solver is 
employed because it requires less computing time and leads essentially to the same solution as 
the Osher Riemann solver.’ If the left and right states at a cell face are U, and U,, the wave 
decomposition used in the Roe scheme is made by assuming a locally constant state 0 for which 

u R - u L = c f k i k ,  F (UR)-F(UL)=x&?k‘ ,dk ,  (8) 
k k 

where 
and ‘,dk = i;( U ,  - u,), with l k  a left eigenvector of a ~ (  C ) / ~ U .  

unique. It can be computed using the special averaging introduced by Roe.’ 

is an eigenvalue ofihe Jacobian matrix aF( 6 ) / a U ,  Fk is a right eigenvector of aF( C ) / a U  

In Reference 10 it is shown that the state v’ for which equations (8) are satisfied exists and is 

The flux at the cell face is then computed using 

- where AF - is defined as 
A F - - J - ” ’  - 

k - k rkak,  
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and with 

The above expressions are useful for computations in a Cartesian mesh. For general meshes the 
wave decomposition is made in the direction normal to the cell face. Such a choice is com- 
putationally convenient but is also quite arbitrary because the decomposition depends on the 
mesh rather than on the flow properties. In practice, however, the procedure appears to perform 
wen and most of the codes based on upwind discretization use this decomposition. With the ‘grid- 
splitting’ procedure the extension to generalized co-ordinates of the approximate Riemann 
solvers is simple: the Cartesian velocities y v and w have just to be replaced by the contravariant 
velocities ii, ir and 6, 

6 = I,u + Iyu + Izw, ii= n,u + nyu + n,w, iG=m,u +myu+mzw,  
(11) 

where ii is the vector normal to the cell face and 1 and ZI are the tangential vectors. In the two- 
dimensional case the tangential vector is uniquely defined by the knowledge of the normal vector; 
in the three-dimensional case the normal vector defines only afumily of tangential vectors 1 and GI. 
A precise definition of these tangential vectors can, however, be avoided by noticing that only the 
linear combinations of the tangential velocities, 

Q y  = I,i, + my&, R, = l,6 + mx6, 

R, = U - PIx;, 

R, = I,ir + mz6,  

R, = W - n,i. 
are needed and that these linear combinations can also be written as 

Q = U - nyii, (12) 

Thus, in order to avoid a precise definition of the tangential vectors, the tangential velocities 6 and 
6 are replaced in the computations by the velocities R,, fly and R,. 

3.4. Computation of the viscous terms 

In a finite volume approach the computation of the viscous terms requires the evaluation 
of first-order derivatives at the cell faces. The computation of such gradients may be obtained 
using the Gauss theorem, but in this work a simpler procedure is employed. The gradients are 
computed with 

where Yi+ 
two sides of the interface. 

is the surface of the interface and “Ir, and Yi+l  are the volumes of the cells on the 

4. IMPLICIT OPERATOR 

The implicit operator used to accelerate convergence to steady state is an extension of the 
operator presented by Coakley.” It is derived from a backward Euler implicit integration of 
equation (1). Instead of solving this operator by relaxation techniques as done in two dimen- 
siond2- l4 and, partially, in three dimensions,’ the three-dimensional implicit operator is 
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dimensionally split,' leading to the resolution of three one-dimensional operators of the form 

where A, the Jacobian matrix of the Euler flux in the curvilinear co-ordinate < (having the vector 
normal to the cell face ii = n,i+ n,7+ n , i  as the directional vector), is given by 

- a~ ac aH 
au au au 

F = FI, G = F?, H = F L  

A = - n n , + - n n , + - n 2 ,  

with 

In (14) M is the matrix of the viscous terms. 
If the spatial derivatives of (14) are discretized with a three-point stencil, the resolution of 

system (14) necessitates the inversion of 5 x 5 block tridiagonal matrix. Following Chaussee and 
Pulliam,'6 the system can be 'diagonalized', leading to the inversion of scalar tridiagonal systems, 
This is accomplished by first replacing the matrix M by its spectral radius 01. The Jacobian 
matrix 2 is then decomposed as A= 7'-' T (where T is the matrix of the left eigenvectors of k 
and is the diagonal matrix of the eigenvalues) and the product T - ' A is taken out of the spatial 
derivative a /a t .  Introducing the characteristic variables 6 = T6U and multiplying equation (14) 
by the matrix T, the system to be solved becomes 

The Coakley scheme is finally obtained if a first-order upwind approximation is used for the 
spatial derivatives of the convective terms and a centred approximation for the diffusion terms. It 
should be noted that whereas the matrix A' involves only the components of the normal vector 2, 
the matrices T - I ,  T and thereafter Sc involve also the tangential vectors 1 and fi. As a 
consequence, while the original system requires only the knowledge of the normal vector ii, the 
'diagonalized' system necessitates also the definition of the tangential vectors 7 and fi. Since the 
normal vector ii is calculated by taking the cross product 2, xT2 (Figure l), it seems natural to 

Figure 1. Definition of the cell face reference frame 
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0 
T= directional vector 

of the curvilinear 
coordinate ( 

k - 1  k 

Figure 2. Evolution of the tangential vector GI in the boundary layer 

choose 

-. 
G=ii x 1. (17) 

Such a procedure, however, produces spurious crossflows for purely two-dimensional flows. In 
the simple case of a two-dimensional turbulent flow on a flate plate, the vectors 7 and i can be 
chosen as the tangential vectors if the mesh is Cartesian (Figure 2). The contravariant velocities 
are then identical to the Cartesian velocities. 

Aii=Au,  A6=Av,  AiG=Aw (=O), 
and the implicit system for the tangential velocities can be written as 

Y [ a u l i =  [Avli ,  9 [ S w l i  = [A wIi ,  (18) 
where Aq and 6q denotes an increment computed after the explicit step and after the implicit step 
respectively and [q l i  is the vector of the variables q, defined in the plane i=constant: 

CSqIi= C&i, 1 9  * * . 9 6qi, j- 1 3  Qi, j ,  &i, j+  1 . . * 9 6qi,,IT* 
If the matrix Y is not singular, spurious crossflow cannot be introduced by the implicit operator. 

When equations (16) and (17) are used to compute the tangential vectors land G, the tangential 
vectors will differ from 3 and i. In any plane i = constant their form will be 

l j =  aj j + B j k ,  
- +  - - - - .  

mi = y j j  +- 6,k. 
Using these vectors for the definition of the contravariant velocities, the 'diagonal' implicit system 
can be written 

~ [ 6 ~ l i = C ~ l  CAv1i-t [PI [Awl i ,  Y[CsGIi=Crl CA~l i+C6ICAwli ;  
thus 

[ 6 ;Ii = 9- [a] [ Auli + Y - [B] [ Awli, [bGIi= 44-'[y][Auli +Y-'[S] [Awli. (19) 
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The solution of the implicit operator will be independent of the choice of the tangential vectors if 
the tangential velocities also satisfy 

C ~ ~ l i = C a l  C6~li+CB1 CSwIi, C ~ ~ l i ~ C ~ l C ~ ~ l i + C ~ l C ~ ~ l i ~  (20) 
Unfortunately, relations (20) are not always fulfilled, as can be seen by replacing, in (19h 9[60], 
for [AuIi and 9 [ 6 w I i  for [ A w l i :  

[651i = 9- [a] 9 [ 6 u l i  +.Y- [ B ]  9 [ 6 wIi ,  
[66Ii = 9- 1 [y] 9 [ 6 U l i  + 9- [S] 9[ 6 WIi .  (21) 

Expressions (21) are identical to (20) if and only if the matrix 9 commutes with the diagonal 
matrices [ a ] ,  [PI, [ y ]  and [a]. For general matrices Y it is then required that 

[ u] = aI, CB1 =PI ,  Crl =rL [ S] = 61. (22) 
In the case of the two-dimensional turbulent flow on the flate plate, because of the stretching of 
the mesh in the boundary layer, relations (22) are far from being satisfied and, as a consequence, 
a strong crossflow is generated (SwZO). What appears to be the ‘natural’ procedure should 
therefore be rejected. 

The method proposed to compute the tangential velocities-which avoids a precise definition 
of the tangential vectorsland 6-follows the procedure used in the explicit step: the computation 
of the increments of the tangential velocity vectors 6; and 66 is replaced by 

6R, = ( 1,6 6 + m,6 6) = 6 u - n,bii, 

6 0 ,  = ( l y  6 6 + mY6 6) = 6 u - ny6ii, 

6R, = (1,6; + m , 6 i )  = 6 w - n,bii. (23) 
Performing linear combinations on the equations for 6; and 86, the following equations are 
obtained: 

Finally, neglecting locally the spatial variation of the co-ordinate components le and me, the 
equations for 6Q can be formed: 

I + G A t -  6 R e = A R e ,  O=X,Y,Z. (25) ( 3 
Thus, instead of solving the two equations for 6; and 66, the three equations for 6R,, 6Ry and 
6R, will be solved. The three velocity components 6 0 ,  are not independent; they should satisfy 

n,6R,+ny6Ry+n,SR,=0. (26) 
Because of the simplification made for the transformation of (24), equation (26) is generally not 
verified; the tangential vector 6h does not lie in the tangential plane. Therefore it is replaced by its 
projection on the tangential plane, 

6RL = 6R, - nod, 

6=n,6R,+ny6Ry+n,6R,. 

(27) 
with 
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By construction, no spurious crossflow can be generated with this procedure. Numerical 
experiments were performed; they confirm that for purely two-dimensional flows the three- 
dimensional operator leads effectively to the same convergence rate as the corresponding two- 
dimensional operator. 

5. BOUNDARY CONDITIONS 

The use of upwind schemes simplifies significantly the computation at the boundaries since only 
‘physical’ boundary conditions are needed. For instance, if only simple waves are assumed at the 
boundaries, the Osher P-variant scheme can be used at the boundaries by replacing the 
information contained in the waves outside the computational domain by the natural physical 
boundary conditions: static pressure at an outflow boundary; rest temperature, rest pressure and 
flow angle at an inflow; no slip velocity, zero normal pressure gradient and adiabaticity at a solid 
wall; etc. For lifting aerofoils, the freestream conditions are modified by taking into account the 
circulation around the aerofoil as discussed in Reference 17. The undisturbed flow conditions are 
used for flows around finite wings since the disturbances created by the wing decay more rapidly 
in the three-dimensional case than in the two-dimensional one. 

In the implicit step all the boundary conditions are treated implicitly. For the characteristic 
variables 6R,, 6R,, 6R, and a26p-6P,  if the index of the boundary is denoted by N +  1, the 
equations at all boundaries can be cast into the form 

~ U N +  1 = d l  SUN + d 2 6 U ~ -  1 ,  (28) 
with 

d , = d 2 = 0  
d , = +  and d , = 4  for an extrapolated boundary condition, 
d ,  = 1 or 0 and d ,  =O for a symmetry condition, 

for a solid wall, a far-field boundary, 

If treated implicitly, the symmetry and wall boundary conditions introduce some coupling 
between the variables 6 R  ’ = SP +pal% and 6 R  - = 6P-pa6; .  Therefore the implicit equations 
cannot be completely decoupled and a 2 x 2 block tridiagonal system has to be solved for these 
characteristic variables. The boundary conditions associated with this 2 x 2 system are the 
equivalent of (28), 

with 

d :* 2.3  = 0 
d * - d * = $  1 -  2 and d:=O at a wall and a symmetry plane, 
d :  = d ;  =+, d 2 -  + - d -  1 =O and d :  = -* for an extrapolated boundary conditions, 

for a far-field boundary, 

Since the same functional form (28) or (29) is used at all types of boundaries, the computation of 
implicit boundary conditions does not impair the capability for vectorization of the implicit step. 
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6. TURBULENCE MODELLING 

Two simple mixing length turbulence models were examined in this work. The first model 
considered is the conventional Baldwin-Lomax model" 

vIi = pK2q2 Dz 101, K =0.4, v 0  = l.6FwFkleb(q), Vt=min(vtj, vtoh (30) 

where 

u, = max J( vw 1, D=l-exp(-&), q i. ---, -u,lt 
V 

Fkleb(q)=0.0168 1 + 5 3  __ [ ( 2 ) " - ' .  

The definition of u, has been chosen slightly different from the wall shear stress used in the 
original Baldwin-Lomax turbulence model. This modification is necessary to enforce u, > 0. 
Using the original Baldwin-Lomax formulation, it is possible to find at a separation point that 
u,=O, which then leads to laminar flow, v , = O !  This can happen when the foot of a mesh line 
coincides with the location of a saddle separation point, where the vorticity at the wall is zero. 

It is well known that equilibrium models such as the Baldwin-Lomax model are not suited for 
separated flows for which the diffusion and the convection of turbulence are not negligible, since 
they introduce an imbalance between production and dissipation rates of turbulence. While 
retaining the eddy viscosity assumption, these non-equilibrium effects can be taken into account 
by two-equation models, K--E and K - o .  However, it appears that despite their 'universality', the 
two-equation models do not improve significantly the agreement between the computed results 
and the experimental data for separated  flow^.'^ A less ambitious approach is to modify two- 
layer mixing length models in order to extend their applicability to separated flows. Such an 
approach has been taken by Johnson and King, 2o and the model they derived appears to be 
adequate for the computation of separated flows on aerofoils and wings.2'* l9 

The idea behind the Johnson-King model is: (i) to scale the turbulent velocity to the square root 
of the maximum Reynolds shear stress rather than to the product of the wall vorticity by a length 
scale; (ii) to compute the maximum Reynolds shear stress by solving a differential equation in 
which non-equilibrium effects are taken into account. Since the level of the turbulent shear stress 
is then determined by the differential equation, the Johnson-King model, in contrast to more 
conventional mixing length models, neither depends only on local mean flow gradients nor 
assumes a turbulence in equilibrium. The eddy viscosity distribution in the inner layer is 

vti = K qDZuM, (31) 
where 

Here and below the index M indicates the location where the Reynolds shear stress is maximum. 
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As stated, the turbulent shear stress q,, is obtained through the resolution of a differential 
equation; see Reference 20 for its derivation. In the three-dimensional case this equation is 

with 
L,=min(Kq,, 0.225 K6). 

The left-hand side of (32) represents the convection of the turbulent shear stress. The diffusion of 
the turbulent shear stress is modelled by the last term of the right-hand side, while the remaining 
term corresponds to the imbalance between the production and dissipation of turbulence. This 
term is consequently approximated by the difference between the actual shear stress and the shear 
stress that would have been obtained if turbulence had been in equilibrium. This shear stress tcq is 
computed at r]  = q M  using 

with 

D=l-exp( -3). 17v u&=max(vteqIwl), Fk=0.0168 [ 1 + 5 5  (:)6]-1, - 6 =  mmaX. 
The convection terms of (32) are approximated by first-order upwind differences. The equation is 
then solved with a point-alternate symmetric Gauss-Seidel relaxation with one relaxation 
performed in each direction. 

In the original formulation of Johnson and King the outer eddy viscosity layer was based on 
the Cebeci-Smith distribution. This formulation was well suited in the boundary layer context 
used by Johnson and King for the derivation of their model. However, for Navier-Stokes codes 
the Baldwin-Lomax formulation is more convenient since it eliminates the need for finding the 
edge of the boundary layer, which usually is a source of numerical errors. The outer eddy viscosity 
layer is therefore calculated using 

~, ,=a1~6F,Fk=~~, , , , .  (34) 
The coefficient a is introduced to force the value of the maximum shear stress fM=max(p,Iwl) to 
match the value tM obtained from the solution of the differential equation (32). 

The final value of the eddy viscosity v, is then computed from a blending of vti and v,,: 

v, = v,, [ 1 -exp (-31. 
7. NUMERICAL BEHAVIOUR OF THE JOHNSON-KING MODEL 

(35) 

In this section the behaviour of the Johnson-King model is examined in more detail from a 
numerical point of view4iscussion of the predictions of the model and comparison with 
experimental data are left to the Results section. Despite its simplicity, the Johnson-King model 
is highly sensitive to its actual implementation, which usually is not described in detail. The 
crucial points are (i) the computation of ueq, (ii) the location where to turn on the Johnson-King 
model and (iii) the computation of u. 
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7.1. Computation of ueq 

In the following the method for computing ueq is explained such that 

UZq =max ( Vteq I a(ueq) I (36) 
is automatically enforced. An explicit expression can be given if vteq is computed using 
vleq =min(vlieq, vtoeq) instead of vlcq =vtocq[l -exp( -vtieq/vtocq)]. The latter relation was intro- 
duced by Johnson and King for reasons that will be discussed in Section 7.3. 

When the maximum of v ; e q l ~ l  is located in the inner layer, the value of the eddy viscosity is 

vteq = vli cq = K ~ D ~  ueq. 

The definition of ueq then leads to 

uzq =Vticq I WI = KyD2 Ueq la I, 
which implies 

U,,=KYD~ICO~. (37) 
The functionA=(KyD2101)2 is thus the locus of the possible values of u:q when the maximum of 
v t e q ( a (  is located in the inner layer. Let us now introduce the points ycql, yi and yo defined by: 

(a) yeq2 is the point whereJ(yep2)=fo(yeq2) withf,(y)= vtOeqIw(y)I (the functionsA andf, have 
always at least one intersection; in cases of multiple intersections, ycq2 is the position of the 
first one) 

(b) yo is the point where f, (y)  is maximum for y 2 yeq2 
(c) yi is the point wheref,(y) is maximum for y<yeq,. 

The value of u,, satisfying (37) is then 

UZq = max ( f, ( y o  ), X (Yi)). 
A graphical representation of the three possible cases is given in Figure 3. 

u= = VlW I ua = y w  1 uz = y w  I 
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7.2. Initial conditions for the Johnson-King model 

For two-dimensional problems the computation of the maximum shear stress t~ requires only 
the solution of one ODE. The solution of the equation can easily be obtained using a marching 
procedure. However, as with any marching procedure, some initial condition must be supplied. 
The obvious choice is to compute the turbulent quantities on the first sections after the transition 
from laminar to turbulent flow with the equilibrium model. The transition from the equilibrium 
model, equation (33), to the non-equilibrium model, equations (31) and (34), is then located in a 
region where 

“(5) - 112 N O .  

d t  P 

This condition appears naturally when replacing, in (32) tM by teq and 0 by one, and is imperative 
in order to have a smooth distribution of the eddy viscosities in the flow field. 

7.3. Computation of cr 

As explained in the description of the model, the coefficient 0 is introduced in order to force the 
value .‘i= max( v,IwI) to be identical to the value u i = t M / p  obtained by solving equation (32). 
If the maximum of v, 101 is located in the outer layer and if v, is calculated by v, = rnin(vli, vl0), than 
cr is simply 

The procedure proposed in Reference 21, 
2 

c r k + l -  k - 0  
ii; (0‘) ’ (39) 

gives also in this case the correct solution. This procedure, however, fails when the maximum is 
located in the inner layer, because it is possible that u”(ak+ ’)= i i ( 0 k )  (Figure 4). In the following it 
is explained how to calculate-in one iteration-the value of 0 which enforces iiM = 12,. The 
procedure explaining how to calculate cr will also shed some light on the appearance of situations 
for which cr b 1 and 0 4 1. 

The value cr for which u,=ii, is 

(40) u i  
VIO cq I 0 I y = y, ’ 

f, (Y)  = Voeq I w I) 

o= 

with yo defined as the location where f, ( y) is maximum for y 2 y, . The function f, (y) is  

and the point y, is the first point for whichff (y) = KyDZ 1 0 )  is equal to u i  (the extreme situation 
where A(y) does not intersect u i  will be discussed later). A graphical representation of the 
correction process (40) is displayed in Figure 5 for usual situations. For these usual situations, 
cr exists and is unique. 

Let us now examine unconventional situations. The first unconventional situation is whenff(y) 
and u i  do not intersect. Two cases must be distinguished. The first case is when yi -= yo, where yi 
and yo are the locations for whichff (y) andf,(y) respectively are maximum. In this case equation 



788 Y. P. MARX 

4 

u = @  

uy - . - - -  

initial distribution 

distribution correct& with eq. 38 

I 8  

I 
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A 
1 1  I 

I ' I  

I I '  
Ut I I 

0' Vloq  initial dirrtribution 

distribution COITCYLNI with -1. 30 

nLI* final distribution. t t ~  = C M  
w o q  

I 
* 

v 

Figure 4. Effect of u on the velocity scale iiM 

Figure 5. Determination of values of u which enforce uM = ii, 

(40) still gives the value cr that enforces uM = iM (Figure 6(a)). The second case is when yi > yo .  In 
this case it is not possible to enforce uM = iM; no solution for cr exists (Figure 6(b)). 

Also possible is to find a situation where an infinite number of solutions for cr exist. This 
interesting situation arises whenj(y) is tangent to u i  for some y (Figure 7). In practice, to find 
thatJ(y) is just tangent to u i  is unlikely, but near-tangent situations were observed. These near- 
tangent situations usually lead to abnormal values for n (09 1 or 0% 1). The appearance of 
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b 

Y 

Figure 6. Illustration of situations where the function$ does not intersect u: 

Y 

Figure 7. Case with an infinite number of solutions for u 

abnormal values can be illustrated by considering the situation where at the iterative step n the 
functionX(y) presents a local maximumi(yi,) close to u i ,  i.e.fr)(yiM)= ui@) -& .  Let us further 
assume that at the n+ 1 iterative step 

f ?+ l )  (yiM) = U i ( " + l )  + &. 

When these conditions are encountered, small values for o will be found since equation (40) leads 
to 

a(n+l)  < d"', 
especially whenf, ( y ) is a decreasing function for y 2 yi, (Figure 8). Similarly, large values for 0 are 
obtained when u#=fl)(yiM)-& and uk+l)=f!n+l)(yiM). Thus, whenff(y) presents an extremum 
A( yiM) in the range ofpossible values of uM, the function c ( # M )  will be discontinuous at u i  =i(yiM) 
and numerical difficulties should be expected. By introducing a blending between vti and v , ~  as 
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Figure 8. Illustration of a case where a small change in u,,, induces a large change in u 
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Figure 9. Pressure and skin friction distributions RAE 2822 (case 10): Baldwin-Lomax model, 257 x 65 mesh 

proposed by Johnson and King, it is possible to reduce the amplitude of 0. In practice, this 
modification was not found to be sufficient to prevent 0 from taking abnormal values. Therefore 
fixed bounds on 0 have to be imposed. 

8. RESULTS AND DISCUSSIONS 

In order to validate the implementation of the Johnson-King model, computations were 
performed on the RAE 2822 aerofoil with M, = 0.75, a = 2.81 and Re = 6.2 x lo6, flow conditions 
referred to as case 10 in Reference 22. Under these conditions a shock-induced separation forms on 
the upper surface of the aerofoil. In this case, as is well known, the Baldwin-Lomax turbulence 
model does not predict an adequate level for the eddy viscosity and the shock is located in the 
wrong position (Figure 9). With the Johnson-King model, excellent pressure and skin friction 
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Figure 11. Pressure distribution, RAE 2822 (case 10): 
original Johnson-King model, 161 x 33 mesh 

Figure 12. Pressure distribution, RAE 2822 (case 10): 
Johnson-King model with Baldwin-Lomax formulation 

for vtie4, 257 x 65 mesh 

distributions have been found (Figure 10). However, it has been observed that the Johnson-King 
model is particularly sensitive to the initial level of the maximum shear stress. For instance, the 
'solution' (unsteady) shown in Figure 11 has been obtained in the following manner: the Reynolds 
equation with the Baldwin-Lomax model is first solved on an 81 x 17 mesh; this solution is then 
interpolated on a 161 x 33 mesh and used as the initial condition for this finer mesh; 50 iterations 
are then performed on the 161 x 33 mesh with the Baldwin-Lomax model before the original 
Johnson-King model is turned on. If more iterations had been performed on the 161 x 33 mesh 
with the Baldwin-Lomax model, steady but wrong solutions would have been obtained as well. 
The correct solution is obtained only when the flow field is initialized with the converged flow 
obtained with the Baldwin-Lomax model. In order to enforce a unique solution-independent of 
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Figure 13. Wall streamlines, ONERA M 6  M, =0.84, 
a = 6.06, Re = 11 x lo6, Baldwin-Lomax model, 193 x 49 

x 33 mesh 

Figure 14. Pressure contours, ONERA M6: M, =084, 
a = 6.06, Re = 11 x lo6, Baldwin-Lomax model, 193 x 49 

x 33 mesh 

the initial condition-the velocity scale used in the inner layer of the equilibrium eddy viscosity, 
vtieq, has to be replaced. Instead of using ueq=vtcqlcol as in the original Johnson-King model, 
ueq=rnax(v,,,IoI, viol) must be employed. This remedy was, however, not sufficient in the 
computation of the O N E R A  M6 wing. The level of the starting maximum shear stress was in this 
case still too low and, as a consequence, the shock location was moving upstream without bound. 
The remedy was then to replace, in the computation of vIicq, the inner layer formulation of 
Johnson and King by the Baldwin-Lomax formulation vti cq = KZ q2 0’ I o 1. Unfortunately, it can 
be observed that with the Baldwin-Lomax formulation for vtieq the pressure recovery on the RAE 
2822 aerofoil is not predicted as well as with the ‘original’ formulation; a pressure bump is found 
as displayed in Figure 12. The observed sensitivity of the Johnson-King model is primary due to 
the position of the maximum of v t e q l o l  in the initial sections-where rM=req is enforced. If the 
maximum is in the inner layer, then situations where a small change in induces a large change 
in c, as explained above, are likely to appear. In these cases the solution becomes extremely 
sensitive to the actual value of c, a value highly affected by the inner layer formulation for v,. 

For three-dimensional flows as well as for two-dimensional flows we found that if the value of 0 

is correctly monitored, accurate predictions of separated flows can be obtained. The test case is 
the ONERA M6 wing for which comparisons with experiments are po~sible.’~ For an angle of 
attack a=6-06 a large separation region forms on the upper surface of the wing as shown in 
Figure 13. In this case the Baldwin-Lomax model is again inadequate to capture the main 
features of the flow. The pressure plateau after the interaction of the shocks-the shock 
emanating from the leading edge and the normal shock (Figure 14)-is, for instance, not captured 
at all. Since pressure plateau regions behind a shock wave are usually the result of a large reverse 
flow region, a non-equilibrium model must be used in order to obtain good resolution of the 
pressure distribution. With the non-equilibrium model of Johnson and King it is clear that a good 
representation of this pressure distribution is indeed obtained (Figure 15) and the expected large 
reverse flow region is effectively found (Figure 16). These results are the consequence of the lower 
values of eddy viscosity predicted by the Johnson-King model in adverse pressure gradient 
regions. The lower values of eddy viscosity also induce an upstream movement of the shock 
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Figure 16. Wall streamlines, ONERA M6: M, =084, a=6.06, Re= 11 x lo6, Johnson-King model, 193 x 49 x 33 mesh 

Figure 17. Pressure contours, ONERA M 6  M, =0.84, a=6.06, Re= 11 x lo6, Johnson-King model, 193 x 49 x 33 mesh 

location (Figure 17). No experimental visualizations of the wall streamlines are available for the 
ONERA M6 wing, but these mushroom-type structures were observed experimentally on other 
wings.24 For an attached flow case, a = 3-06, the Johnson-King model predicts a shock location 
which is slightly upstream of the position obtained with the Baldwin-Lomax model (Figure 18). 
This behaviour of the Johnson-King model has already been observed in two dimensions by 
Coakley.' Recently, Johnson and CoakleyZ5 modified the non-equilibrium model to improve the 
prediction of the model for attached flows. With the analysis of the numerical behaviour of the 
model described in Section 7, which explains the sensitivities of the model and gives some 
indications of how to control them, it is thought that the model can be used routinely for the 
computation of attached and separated flows of wings. 
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